Roderick Landreth

April 8, 2019

MER-322: Dynamics of Physical Systems
Professor Ramasubramanian

Automobile Suspension Modelling

Introduction

The purpose of this experiment is confirming that the method of state propagation yields the same
result as modeling a given dynamic system using Simulink. This model is a suspension system, similar
to that of a car. Both methods analyze how successfully this suspension system reduces the vertical
acceleration and jerk of the driver by as much as possible.

Materials and Methods

The system being modeled is a mass suspended by a spring and damper, connected from a mass that
contains a wheel running over obstacles on the ground. The system input is the ground terrain elevation
over time, and the output is the movement of the sprung mass. We derived state equations from the forces
acting on each mass (M, and M,,), relating state derivatives to the spring constants (K) (modeling the
wheel as a spring), the damper constant (B), and the vertical position and velocity of masses and the
ground (z and). The vertical position of the ground is a single flat step that lasts one second, with a

magnitude of 0.05m. 1
iy = — | K02 — @) + By(d2 —)] (1)
.. 1 . .
To = m [Kt(ajg — xg) — Ks(m'g — xg) — BS(:CQ — 1‘3)] (2)

Simulink solved the differential State Equations 1 and 2 discretely within the program using a time
step of At = 0.001s. State propagation in Python used Euler’s method, iterating over small time steps to
produce values of position and velocity for each time, which can then be used to find values of acceleration.
If the time steps are too large, the estimate is too rough and over-corrects during subsequent time steps,
eventually becoming an unstable and inaccurate solution.

Results

Figure 1 displays both solutions graphed on the same plot, confirming that state propagation and
Simulink yielded the same results. The shape of the acceleration is as expected, including a positive large
peak at t=1 as the wheel climbs the step, and a negative peak at t=2 as the wheel dismounts the peak. The
acceleration’s oscillation after mounting and dismounting the step is desirable, applying more acceleration
and jerk to the passenger than the ideal suspension system, which would produce low maximum acceleration
without subsequent oscillation.

Discussion

The benefits of Simulink include its visual representation of the system, quick production time and
integration with Matlab. The State Propagation using Euler’s method can be created without specific
software in different programming languages (this case uses Python), meaning it is more easily accessible.

This model assumes the wheel is small, mounting the step quickly rather than a large diameter wheel
slowly ascending. If there were no damper, the initial jump in acceleration would be much higher over
a shorter time interval, causing more discomfort to the passenger. If the wheel were large in comparison
to the bump, the increased time to mount the step would lower the maximum acceleration and increase
comfort.

Roderick Landreth

Attachment A: Plotting Model Solution

— & ——- State Propagation Solution
N 15 - $ = = Simulink Solution
< :
v
s
€ 10- ﬁ
c H "y
C
2] ' i
|
E T L T
] 0 4 A FA—S-FA-S-E-Fg & \-‘—‘I‘h'* ‘; # g
T ','t § e N
v r M
o 5 ¥ i
< S t:
© I
E —10 - 4
S
| .
U —15
=>
o.lo 0:5 1.Io 1.|5 2 .Io 2 .|5 3:0
Time (s)

Figure 1: A Comparison of the Suspension System’s Sprung Mass Vertical Acceleration Solutions
generated by Euler’s method of state propagation, and with Simulink. Solutions use At=0.001, a sprung
mass of 300kg, an unsprung mass of 30kg, a spring with spring constant K, = 6000N/m, a tire with
stiffness K; = 12000N/m, and a shock absorbed(damper) constant of by = 6000Ns/m

2 of 4

Roderick Landreth

Attachment B: State Propagation Python Code

State Propagation using Python
Author: Roderick Landreth
Date: April 9, 2019

import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image

""" Given system parameters, propagate the states,
returns the acceleration of the sprung mass."""
def propagate_suspention(ms,mu,ks,bs,kt,T,dt):

Initial Conditions

x2=[0]

x3=[0]

v2=[0]

v3=[0]

x1=[0]

a2=[0]

a3=[0]

t=[0]

T=3

dt=0.001

numsteps = T / dt

Iterates over the Timestep
for i in range(0,int(numsteps)):

This is the input, x1, the terrain the wheel passes over
if (t[i] < 1:
x1.append(0)
elif (t[i] > 2):
x1.append(0)
else:
x1.append(0.05)

x2.append(x2[i] + v2[i] * dt)
x3.append(x3[1i] + v3[i] * dt)

v2.append(v2[i] + a2[i] * dt)
v3.append(v3[i] + a3[i] * dt)

a2.append(1 / mu * (ks * (x2[i] - x3[i]) - bs * (v2[i] - v3[i]) + kt * (x1[i] - x2[i])))
a3.append((1 / ms) * (ks * (x2[i] - x3[i]) + bs * (v2[i] - v3[i])))

t.append(t[i] + dt)
return (a3,t)

>?’This is to export the file for graphing in MatLab, because my desktop

3of4

Roderick Landreth

is having troubles with installing external modules like matplotlib’’’
def export_txt(lst,name):
threePositionSolution = open("{}.txt".format(name), "w")
threePositionSolution.write(str(1lst))
threePositionSolution.close()

’?2Plot a list and name the axes’’’
def sol_plot(xl,yl,labell,param_dictl,x2,y2,label2,param_dict2,x_axis,y_axis):
fig, ax = plt.subplots()
axis_font = {’size’:16}
ax.plot(xl,yl,**param_dictl)
ax.plot(x2,y2,**param_dict2)
ax.set_xlabel ("{}".format(x_axis) ,**axis_font)
ax.set_ylabel("{}".format(y_axis) ,**axis_font)
plt.legend([labell,label2])
plt.show()

pngl = BytesIO()

fig.savefig(pngl, format=’png’)
png2 = Image.open(pngl)
png2.save(’State Propagation.tiff’)
pngl.close()

Converting the Simulink solution from a stripped ascii file to a float array
get_a3_Simulink = open("a3.txt","r")

a3_Simulink=[float(x) for x in get_a3_Simulink.read().split(’,’)]
get_a3_Simulink.close()

print (a3_Simulink)

State_Propagation_Solution = propagate_suspention(300,30,60000,6000,120000,3,0.001)
export_txt(State_Propagation_Solution,"State Propagation Solution")
sol_plot(State_Propagation_Solution[1],State_Propagation_Solution[0],

"State Propagation Solution", {’color’ : ’red’, ’linestyle’ : ’--’},
State_Propagation_Solution[1],a3_Simulink,"Simulink Solution",
{’color’ : ’blue’, ’linestyle’ : ’:’, ’linewidth’:4},"Time (s)",

"Vertical Acceleration (m/s~2)")

4 0f 4

