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MER-322: Dynamics of Physical Systems
Professor Ramasubramanian

Modelling Frequency Response of a Lowpass Filter

Introduction

The intent of this exercise is to accurately model the effect of input voltage frequency on a low pass
filter’s output. This will then be compared to data taken from the circuit itself to confirm its accuracy. The
input signal was provided by a function generator, and an oscilloscope was used to measure the amplitude
and phase shift of the input and output signals.

Methods

The Low-Pass Filter circuit was constructed on a breadboard with the input being a sinusoidal signal
with peak to peak amplitude 7.32 volts, and a frequency that was adjusted between 100Hz and 100kHz.
Over this range, data was taken at 35 different frequencies of input peak to peak voltage, output peak to
peak voltage, and time shift from the zero point of the input to the zero point of the output. The time
shift was then converted into the phase shift between the output and input. The values of resistance in
the low pass filter (Figure 1) were confirmed with a multimeter.
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Figure 1: low pass filter, 353 operational amplifier, measured with values R; = 9.85k€), Ry = 9.87k()

The analytical model for this system’s frequency response was based on the transfer function, derived
using the impedance method in tandem with nodal analysis on two nodes along the non-inverting input.
In this case, the voltage at the non-inverting input should be approximately equal to the inverting input,
which should be equal to the output voltage. Taking the Laplace transformation of the resulting equation
and evaluating at s = jw produces the sinusoidal transfer function of equation 1. The magnitude of the
output sinusoide is directly related to that of the input multiplied by the absolute value of H(jw), and the
output phase shift is the complex angle of H(jw), as used in the model.
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H(jw) = (1)

Results

Figure 2 shows the agreement between the modeled frequency response of the system and the measured
output amplitude and phase shift over 35 different frequencies. As the frequency of the input signal
increased, the amplitude of the output signal decreased, and was delayed more, shown by the negative
phase shift.
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Figure 2: Python Plot of Model Data vs. Measured Data. Top: The Amplitude frequency response shows
agreement between the measured data points and the model’s analytical approximation. Bottom: The
Phase Frequency Response in degrees from the input of the output signal. The increasingly more negative
angle indicated the output signal was increasingly more delayed as the frequency increased. Code found
in Appendix A.

Discussion

This low lass filter deviates a small amount from the model, potentially caused by any internal impedance
not accounted for by the resistors and capacitors. If the resistance used in the transfer function is increased,
the model more closely matches the experimental results. This may indicate a bad connection or a small
internal impedance within the 353 op-amp. In the phase response the data lines up with the model less
because it was more difficult to measure the time shift with smaller values at higher frequencies. Each time
the scale on the horizontal axis was decreased, the accuracy of the time value improved. This is displayed
in Figure 2 (bottom) as the data dips away from, and then towards the model’s approximation between
10* and 10° Hz.

This model is critically damped, meaning that there are real, equal roots of the polynomial in the
transfer function’s denominator, and that this circuit configuration has the fastest change of its frequency
and phase without oscillation. Within this critically damped system, the cutoff frequency can be altered
by changing the resistance or capacitance values. The cutoff frequency is inversely related to the resistance
and capacitance. This can be seen in the frequency response (equation 1) as R (or C) increases on the
denominator, in order for |H (jw)| to remain the same, w (and therefore f) will have to decrease, shifting
the frequency response curve of Figure 2 to the left.
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Appendix A: Python Code

# Frequency Response Simulation using Python
# Author: Roderick Landreth
# Date: May 22, 2019

import matplotlib.pyplot as plt
from io import BytesIO

from PIL import Image

import math

import cmath

#Constants

radToDeg = 180/ (math.pi)
Res=9.86%10%*3
Cap=10%**-9

""" Plot two subplots each with two datasets"""
def sol_plot(xl,yl,labell,label2,param_dictl,x_axis,y_axis,x2,y2,param_dict2,x21,y21,
param_dict21,x22,y22,param_dict22,x_axis2,y_axis2):
fig, ax = plt.subplots(2,1,figsize=(10, 8))

axis_font = {’size’:16}

ax[0] .set_xscale(’log’)

ax[0] .plot(xl,yl,**param_dictl)

ax[0] .plot(x2,y2,**param_dict2)

ax[0] .set_xlabel("{}".format(x_axis),**axis_font)
ax[0] .set_ylabel("{}".format(y_axis) ,**axis_font)
ax[0] .legend([labell,label2])

ax[1] .set_xscale(’log’)

ax[1] .plot(x21, y21, **param_dict21)

ax[1] .plot(x22, y22, **param_dict22)

ax[1] .set_xlabel ("{}".format(x_axis2), **axis_font)
ax[1] .set_ylabel("{}".format(y_axis2), **axis_font)

plt.show()

pngl = BytesIO()

fig.savefig(pngl, format=’png’)

png2 = Image.open(pngl)

png2.save (’Frequency Response.tiff’)
pngl.close()

# Convert the txt file of measured experimental results from a ascii file to a float array
get_Data = open("Data","r")
expData=[]
for line in get_Data:
expData.append([float(x.strip()) for x in line.split(’\t’)])
get_Data.close()
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MeasuredHjw=[-20*math.logl0(float (expData[2] [x])/expDatal[3] [x]) for x in range(0,35)]
PhaseShift=[-360*expDatal[0] [x]*expDatal[l] [x] for x in range(0,35)]

# Model of System, including 9990 datapoints using the Sinusoidal Transfer Function (Hjw)

modelFreg=range (100,100000,10)

omega=[2*math.pi*x for x in modelFreq]

Hjw=[1/((1-(Cap**2*Res**2*x**2) +Cap*Res*x*complex(0,2))) for x in omegal
MagDec=[20*math.logl0(abs(x)) for x in Hjw]
Phase=[cmath.phase(x)*radToDeg for x in Hjw]

sol_plot(expDatall] ,MeasuredHjw,

"Measured","Modeled", {’marker’:’x’,’color’ : ’black’, ’linestyle’ : ’none’},
"Frequency (Hz)","Signal Strength (Db)",

modelFreq,MagDec,{’color’ : ’black’, ’linestyle’ : ’-’, ’linewidth’:2},
expData[1] ,PhaseShift,{’marker’:’x’,’color’ : ’black’, ’linestyle’ : ’none’},
modelFreq,Phase,{’color’ : ’black’, ’linestyle’ : ’-’, ’linewidth’:2},

"Frequency (Hz)","Phase Shift (Degrees)")
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